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A new singular-vortex theory is presented for geostrophic, beta-plane dynamics. The 
stream function of each vortex is proportional to the modified Bessel function Ko(pr),  
where p can be an arbitrary positive constant. If p-l is equal to the Rossby 
deformation scale R,, then the vortex is a point vortex ; for p-I =k R, the relative 
vorticity of the vortex contains an additional logarithmic singularity. Owing to the 
/3-effect, the redistribution of the background potential vorticity produced by the 
vortices generates a regular field in addition to the velocity field induced by the 
vortices themselves. Equations governing the joint evolution of singular vortices and 
the regular field are derived. A new invariant of the motion is found for this system. 
If the vortex amplitudes and coordinates are set in a particular way then the regular 
field is zero, and the vortices form a system moving along latitude circles at a 
constant speed lying outside the range of the phase velocity of linear Rossby waves. 
Each of the systems is a discrete two-dimensional Rossby soliton and, vice versa, any 
distributed Rossby soliton is a superposition of the singular vortices concentrated in 
the interior region of the soliton. An individual singular vortex is studied for times 
when Rossby wave radiation can be neglected. Such a vortex produces a complicated 
spiral-form regular flow which consists of two dipoles with mutually perpendicular 
axes. The dipoles push the vortex westward and along the meridian (cyclones move 
northward, and anticyclones move southward). The vortex velocity and trajectory 
are calculated and applications to oceanic and atmospheric eddies are given. 

1. Introduction 
In  recent years a large number of papers has appeared in which the theory of point 

vortices applied to geophysical hydrodynamics has been developed. For various 
reasons this model was found attractive. Real atmospheric and oceanic eddies are 
rather intensive, and the vorticity in the eddies often exceeds the background 
vorticity (for example, in typhoons or oceanic rings). In many cases the investigation 
of the dynamics of the individual point vortices and their interaction is simpler than 
in the analogous problem for distributed regular eddies. Finally, an arbitrary initial 
field can be represented in the form of superposition of point vortices, and the 
evolution of the field can be interpreted as a result of the interaction of vortices. 

Compared to ordinary two-dimensional hydrodynamics, geophysical hydro- 
dynamics includes a number of additional physical factors (stratification, shear 
background flow, /3-effect, etc.) which strongly affect the structure, motion and 
interaction of point vortices. An investigation combining all these effects is a very 
complicated problem, and therefore up to now they have been studied separately. 
The influence of stratification is only one to have been studied quite thoroughly, and 
it was found that stratification results in exponential (instead of algebraic) decay of 



406 G. M .  Reznik 

the velocity field of the point vortex (Obukhov 1949 ; Flierl 1987 ; Morikawa 1960). 
Moreover, baroclinic point vortices can change in a vertical direction (Gryanik 
1983a, b,  1988; Gryanik & Tevs 1989). 

The inclusion of the /?-effect substantially complicates the vortex dynamics. A 
more general class of singular vortices appears which also possess exponentially 
decaying velocity fields, but, in general, can be different from point vortices since the 
stream function of such a vortex is proportional to the modified Bessel function 
K,(pr)  where the reciprocal decay rate p-' can be different from the Rossby 
deformation radius (for more details see $2). Several vortices of this kind with 
appropriately fitted amplitudes and coordinates may form a system moving along 
latitude circles a t  a constant speed (lying outside the range of the phase velocity of 
linear Rossby waves) and generating no velocity field in addition to the velocity 
fields induced by the vortices themselves (Gryanik 1986, 1988; Reznik 1986; Flierl 
1987). There exists a relationship between such systems and two-dimensional Rossby 
solitons (Reznik 1986; Flierl 1987). 

A much more complicated problem arises when the amplitudes and positions of 
singular vortexes are chosen arbitrarily. Owing to the p-effect, the redistribution of 
the background potential vorticity produced by the vortices generates a regular 
velocity field in addition to the velocity field due to the vortices. This regular field 
interacts with the vortices, affects the vortex trajectories, undergoes variation, etc. 
Thus, in contrast to classic two-dimensional hydrodynamics, the description of 
motion of singular vortices cannot be reduced to solving a system of ordinary 
differential equations but is a complex discrete-continual problem even for a single 
singular vortex. The problem of a separate point vortex was considered by 
Bogomolov (1977, 1979, 1985) who investigated the initial stage of motion of a point 
vortex in a thin rotating spherical layer and showed that a point cyclone (anticyclone) 
placed in an initially immovable fluid begins to move northwest (southwest). 

The aim of the present paper is to elaborate a theory of singular vortices on a /?- 
plane. In  $ 2  we derive equations governing the joint evolution of singular vortices 
and a regular background flow. In 5 3 we examine an invariant of motion for such a 
system. Stationary systems of vortices (discrete Rossby solitions) are considered in 
$4. The problem of an individual singular vortex is discussed in $5.  The case of an 
intensive individual singular vortex is considered in $ $ 6 and 7. In  $ 8 we consider the 
problem of an individual singular vortex of moderate intensity in an ocean with a 
free surface and in the rigid-lid approximation. I n  $ 9  we discuss the results and their 
geophysical applications. 

2. Governing equations 

of conservation of potential vorticity (e.g. see Pedlosky 1982) 
The basic equation of the model under consideration is the well-known equation 

which is known in plasma physics as the Hasegawa-Mima equation. Here t is time, 
x and y are coordinate axes directed to east and north respectively, $ is the stream 
function, ,8 is the derivative of the Coriolis parameter with respect to the latitude, V2 
is the two-dimensional Laplacian, J( f ,  9 )  is the Jacobian and R, is the Rossby radius. 
The stream function $ is a sum of two terms, namely a singular component $s and 
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a regular component kr, i.e. $ = $.,+$-,. The singular component @, is given by the 
formulae 

N l N  
7h-1 27c ,=I 

v2@s-Ri2@s = C A n S ( x - x n ( t ) ) S ( y - y n ( t ) ) - -  C An(p2,-R2)Ko@n Ir-rnI). 

(2 b )  

Here S(x)  is the Dirac delta function, and K,(z), l m ( z ) ,  m = 0, 1,  ... are the modified 
Bessel functions of order m. Thus, the singular component @s describes N singular 
vortices moving along the trajectories r = r ,  = ( x , ( t ) ,  y,( t ) ) .  The vortex amplitudes 
A ,  and parameters p ,  that set space scales of the vortex velocity fields can, in 
principle, depend on time. Note that singular vortices (2a) are point vortices (with 
relative vorticity concentrated at  a point) only for p ,  = Rdl. If p ,  =I= R i l ,  then the 
vortex has an exponentially decaying component with a logarithmic singularity in 
addition to the delta function (see (2b)). Substituting @ = $.,+@-, into (1)  and 
equating to zero the regular part and the parts proportional to S(x-2 , )  S(y-y,), 
6' (x-x , )  S(y-y,), and S(x-x , )  s'(y-y,) we obtain the equations 

A ,  = 0, (3a)  

Here 

& ( x )  is the derivative of the delta function, and a = da/dt. 
Each of (3 a)-( 3 d )  has a clear physical meaning. The potential vorticity 

V2$--Ri2$+& 

very close to vortex n is a sum of the regular component Qr+52!+By and the 
singular component 

(4) A , S ( x - x , )  S(y-y,)+"(p2-Ri2) In lr-rfll 

(see (2b)). Since the potential vorticity is conserved in each fluid particle, from (4) it 
follows that the vortex amplitudes A ,  are constant, or, in other words, (3 a )  is valid. 
One more important equation follows from conservation of singular vorticity (4), 
namely 

p ,  = 0. (5) 

A 
27c 
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Equation ( 5 )  means that the lengthscales of velocity fields induced by vortices (2a )  
do not change in time. Equation (5 )  can also be obtained in another way. We assume 
that p ,  + 0 and investigate the regular field $, in the nearest neighbourhood of 
vortex m. We can find from ( 3 4  that there then arises a singularity proportional to 
lnlr - rrnl in the regular vorticity V2$, - Rd2$,. Obviously, this violates the 
conservation of potential vorticity. Further, ( 3 6 ,  c )  mean that the motion of a 
singular vortex is induced by the other singular vortices and the regular component. 

The most complicated equation, ( 3 4 ,  describes the evolution of the regular 
component $.,. This equation contains singular coefficients, and therefore we have to 
define what kind of solution is considered. We assume that the function $, is 
infinitely differentiable a t  r + r, and twice differentiable a t  r = r,. The regular 
vorticity SZ, is continuous throughout the plane but aQ,/at, WSZ, have singularities at 
r = r, (see below), and the singularities in ( 3 4  must mutually cancel. 

Zabusky & McWilliams (1982) also studied systems of point vortices in the /3-plane 
which are identical with vortices (2a, b )  for p ,  = Rdl. They did not take into account 
the regular component $, and assumed that the vortex amplitudes A,  must change 
owing to the /3-effect when vortices shift along the meridian. A system of equations 
for the vortex trajectories was introduced. Kono, Horton & Matsuoka (1989) tried t o  
derive the system directly from (1) .  The preceding discussion shows that this is 
impossible, and the equations introduced by Zabusky & McWilliams are heuristic 
(although very useful for modelling some phenomena on the /I-plane). 

For p = 0, p ,  = Rdl, n = 1,  . . . , N ,  and $, = 0, equation ( 3  d )  is satisfied identically 
and ( 3 ) ,  (5 )  reduce to  the well-known system of ordinary differential equations 
describing motion of interacting point vortices (e.g. Gryanik 1983). At the same time, 
if $, += 0 a t  some moment, then $, also will subsequently remain non-zero since the 
enstrophy of a regular component is conserved (see the next section). Thus, for 
/3 = 0,  p ,  = Rdl the regular component $, interacts with the point vortices but is not 
generated by them. Obviously this is because (2a) are point vortices for p ,  = Rdl and 
the potential vorticity Vz$r-R,2 $r of the regular component coincides with the 
total potential vorticity and is conserved in any fluid element distinct from the point 
vortices. If /I = 0 and p ,  =k Rd', then (2a) are not point vortices, and V2$,.-Rd2 $, 
no longer coincides with the total potential vorticity V2$ -Rd2 $ in the fluid element, 
but depends on the position of the element relative to  the singular vortices. 
Accordingly, if n > 1, then the singular vortices generate a regular component 
even for /3 = 0. 

3. Invariant of motion 
We shall consider below the case when all p ,  are equal, p ,  = p ,  and the last sum 

in ( 3 4  is absent. I n  this case problem (3), (5) has an invariant which, a t  the same 
time, is analogous to the Kirchhoff function of n point vortices and the enstrophy of 
a regular flow. To obtain this we multiply ( 3 d )  by Vz$,-p2$, and integrate 
throughout the plane R. Using the formula 

(V2F-p2F)Ko(pr)dxdy  = -27cF(O, 0 ) ,  (6) s, 
which is valid for any regular function F ( x ,  y), and (3b ,  c )  we obtain the invariant 

I, = S + - ( p 2 - R d 2 )  C A,A,Ko(pr,,)-/3~A,y,= const. (7) 
1 

47c m + n  n 
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Here rmn is the distance between the m and n vortices, and 

S = 5 [(V2$,)’+ (Rd2+p2) (V$,)2+p2Rd2$:]d~dy. (8) I 
The positive-definite functional S is a linear combination of enstrophy and energy of 
the regular field $,. It changes, first, owing to the changes in the distances rm, 
between the vortices and, secondly, owing to the shift of the vortices along the 
latitude (respectively, the first and second terms on the right-hand side of (7)).  

Let us consider an individual singular vortex and differentiate (7) with respect to 
time t ,  

S = pA,y,. (9) 
Let the regular component $, be zero at an initial instant to .  Then the singular vortex 
begins to generate the regular component $,, and the derivative S is positive at times 
close to to ,  and consequently A,y, is also positive. As a result, at the initial stage a 
cyclonic singular vortex (A,  > 0) must move northward and an anticyclonic singular 
vortex (A,  < 0 )  must move southward. This effect was demonstrated by numerical 
and laboratory experiments with regular monopoles (e.g. McWilliams & Flier1 1979 ; 
Firing & Beardsley 1976). The process of generation of the regular component and 
the calculation of the singular vortex trajectory are described in $5. 

The functional S determining the intensity of a regular field depends on coordinates 
of the singular vortices and does not depend on their velocities. The surface 

has a characteristic point Mo = (ry, . . . , r k )  at which 

= 0. 
aF i3F - 
ax, aYn 

It can readily be shown that the coordinates ry, ... , rR satisfy the following 
algebraic system of equations : 

xi - x; 
Ki(prik), p = 1, ... , N .  

‘ i k  

where 

For given amplitudes A,, 2N equations (1 1 a, b )  determine 2N coordinates x:, &. If 
one multiplies (1 1 a) by A ,  and performs a summation over p from 1 to None obtains 

x a:,A A - 2xp Z A q .  
k + q  - p ( p 2 - R i 2 )  

Since at, = -a:,, the left-hand side of (12) vanishes and 

x A ,  = 0. (13) 
4 

Equation (13) is a solvability condition for system ( l l a ,  b )  and, obviously, means 
that (1 1 a) are linearly dependent. Similarly, it can easily be shown that (1 1 b)  are also 
linearly dependent. Thus, system ( 1  1 a, b )  contains 2N-  2 linearly independent 



410 G. M .  Reznik 

equations and 2N unknowns. Note, however, that a&, bOpk depend on differences 
between coordinates of the vortices, and the number of unknowns in (1 1 a, b )  can be 
reduced by introducing new unknown quantities X: = x: -xy.  y: = - y!. The 
number of these quantities is equal to 2N-  2 ; that  is it coincides with the number of 
independent equations (1 1 a ,  b ) .  

The simplest solution to (1 1 a, b )  is obtained for N = 2. By virtue of (13), A ,  = -A2 ,  
and we find from (11 b )  that  x! = x i .  Assume that yy > y i ,  then ayz = Kh (pr!2), where 
yo 12 - - y 1  0 - y:,  and from (1 1 a )  we obtain an equation for r!z : 

Thus, the simplest configuration of singular vortices corresponding to the point M ,  
is a pair of vortices equal in magnitude and opposite in sign; the line segment 
connecting the vortices is perpendicular to the x-axis. In a more complex case, 
N = 3 ,  the vortices are a t  the vertices of an equilateral triangle (see below and Reznik 
1986). System ( 1  1 a, b )  has not yet been solved for N > 3. For N = 2 the point Ma is 
a saddle point, but the type of Ma for N > 2 is also as yet unknown. 

= 0, p = Ril the functional L is simplified and the conservation law (7) is 
written as 

For 

~~[(V2$,)2+2R,P(V$,)2+R;4$:]dxdy 2 = const. (15) 

By virtue of (15), the enstrophy and the energy of a regular component $, do not 
increase in time. The physical reason for this was considered in $2.  

4. Stationary systems of vortices 
Let us consider the simplest solutions to ( 3 ) ,  (5)  for which the regular component 

$r is zero. In  this case ( 3 d )  is satisfied only if p ,  = p ,  = ... = % = p and 

that is, all the vortices move along the x-axis with the same velocity. The vortex 
coordinates are determinated by ( 3 b ,  c )  which can be written as 

Obviously, system (17a, b )  is identical with (lla, b ) .  Since the amplitudes A ,  in 
(17 a,  b)  do not depend on time, the vort,ex coordinates do not depend on time either 
(in the coordinate system moving with constant velocity U ) .  

Thus, the solutions with zero regular component $, are stationary vortex systems 
moving along the latitude a t  a constant speed. Each of the systems corresponds to 
a characteristic point Ma of surface (10) a t  which the zero absolute minimum of 
functional S is attained. The phase velocity U is smaller than -pR; for p < Ril, is 
positive for p > Ril ,  and lies outside the range ( -PR& 0) of the phase velocity of the 
linear Rossby waves. For r - f  00 the velocity field of the vortex system decays 
proportionally to exp ( -pr) ,  where p is related to U in the following way (see (16)) : 

2 - P  -2 p --+R,.  
U 
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We know that the two-dimensional Rossby soliton has the same properties (see e.g. 
Larichev & Reznik 1976 ; Flierl et al. 1980). Therefore one can say that any stationary 
system of singular vortices (2a )  is a discrete Rossby soliton. Condition (13) is 
analogous to the zero-kinetic-moment condition which is valid for any regular 
Rossby soliton (e.g. Stern 1975; Larichev & Reznik 1976; Flierl, Stern & Whitehead 
1983). Conversely, any regular Rossby soliton is a superposition of singular vortices 
(2a)  which are concentrated in the finite interior region 9 of the solition. To show 
this we use the fact that the stream function of a Rossby soliton satisfies the equation 
(e.g. Flierl et al. 1980) 

hence $ = -- j(r)K,(pIr-r'l) dr'. 2', L 
Thus, there exists a direct relationship between singular vortices (2a) and two- 
dimensional Rossby solitons. 

The simplest two-dimensional Rossby soliton is the pair oppositely signed vortices 
that was discussed in the previous section. The solution was obtained and 
investigated in detail by Gryanik (1986), Reznik (1986), and Flierl (1987). A more 
complicated three-vortex discrete Rossby soliton was investigated by Reznik (1986). 
The vortices of such a system form an equilateral triangle; the amplitudes of the 
vortices depend on the orientation of the triangle and can be written as 

A ,  = - A ,  COS(~,~-$) ,  A ,  = A ,  c0sal3, A, = - A ,  COS(~, ,+&IC).  (20) 

Here A, = 4xU/[1/3pKl(p,d)], d is the length of the side of the triangle, a13 is the 
angle between the x-axis and the line segment connecting vortices 1 and 3. By 
analogy with the case N = 2 (see Gryanik 1986; Reznik 1986; Flierl 1987), one can 
readily verify that the amplitude A,  must exceed some threshold value depending on 
the velocity U. Reznik (1986) and Klyatskin & Reznik (1989) obtained analogous 
vortex systems in a rotating paraboloid and on a sphere. Note that these stationary 
systems of vortices (2a) exist also for /3 = 0, R, = 0 0 ;  that is, in the usual two- 
dimensional hydrodynamics. Such systems are immovable, and the vortex 
coordinates are determined by (15) with U = 0. 

5. An individual singular vortex 
System (3), (5) is very complicated, and a complete analysis of it is very difficult. 

However, we managed to obtain an approximate solution describing the evolution of 
an individual vortex for finite times. In the case N = 1, equations (3b-d) are written 

aa, aa aa, a ~ ,  A 
at ax ay ax 2x -- uL-J'-+/3-+J($,,a,)+- J(V2$,-p2$,,KO) 

A 
2x 

+--J{[P-(p,--Rd2)~y+~P--Rd2) VX,K,} = 0. (214  

Here A is the vortex amplitude, ro(t) = (x,(t), y , ( t ) )  is the vortex radius vector, 
14 FLM 240 
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K o = K o ( p r ) ,  U and V are the zonal and meridional components of the vortex 
velocity, and a coordinate system attached to  the vortex is used. Problem (21 a-c) is 
solved for the zero initial condition 

$rlt=O = 0. ( 2 1 4  
There are two timescales in the problem, namely the scale Tl = 21rp-~/A 

characterizing the singular vortex intensity and the ‘wave’ scale T, = (@/p)-l equal 
to the characteristic time required for a perturbation with lengthscale p-’ to travel 
a distance of the order ofp-l due to the @-effect. As will be seen, the motion regime 
strongly depends on the relationship between the scales Tl and T,. 

We introduce the non-dimensional variables 

and write (21a-d) in non-dimensional form. Equation ( 3 4  is written as (the asterisks 
are dropped) 

(22) and the other equations remain unchanged. Here 

a = (pRd)-17 a = Tl/T, = 21r@p-~/A, 52, = V2 $r-a2 $,, 
and KO = Ko(r) .  The choice of the scales corresponds to the assumption that the first, 
sixth, and seventh terms in (21c) are of the same order and are no smaller than the 
other terms in (21 c ) .  This relationship always holds in the nearest neighbourhood of 
the singular vortex where $s is of the order of ln r  and is much greater than the 
regular component $,. 

a high-intensity vortex when 
a moderate-intensity vortex when 
and a small-intensity vortex when 

We shall distinguish between the following three cases : 

a-4 1, (23a) 
(23b) 

a %  1 .  (23 c )  

a x  1 ,  

6. A high-intensity vortex 
We now consider an intensive vortex with a sufficiently large amplitude that (23a) 

is satisfied. Then discarding the terms in square brackets, in (22) we obtain an 
approximate equation : 

P4a)  

Unfortunately, (24a) is too complicated, and we only managed to study a singular 
vortex with 1 -a2 = O(a)  -4 1. Such a vortex is close to a point vortex and coincides 
with the latter when a = 1.  I n  this case (24a) is greatly simplified and can be written 

-+ aQr J(Qr, K O )  3KO (1 - U S )  J(Q,  + uy - vx7 KO)  = 0. 
at ax 

as 

Here r ,  0 are polar coordinates centred at the vortex. The solution to (24b) has the 
form 

Q,+r sin8 = Q [ 0-- K : ( r ) t , r ] ,  
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where Q(u, r )  is an arbitrary differentiable function. From initial condition ( 2 1 4  and 
(25) it follows that Q(8, r )  = r sine, whence we obtain an equation for $r: 

where b = b(r)  = K, ( r ) / r .  The regular solution to (26) satisfying initial condition 
(214  has the form (to within small values of the order of a) 

Vz$, - a2$, = r( cos bt - 1) sin 8 - r sin bt cos 8, (26) 

$, = $l(r, t )  sin 8+ $z(r ,  t)  cos 8, (27a) 

$, =Il(r)(mrz(l-cosbt)Kl(r)dr+Kl(r) r 1-cosbt)I,(r)dr, (27b) 

$z = I,(?-) J: r2K1(r) sin btdr +K,(r)  rzI1(r) sin bt dr I 
Using (21a, b)  we can easily show that the expression in square brackets in (22) is 

of 0 (1) throughout the plane for t of 0 (1) including the point r = 0 despite the 
singularity of Van, at r = 0. Thus, solution (27) satisfies (22) on the whole plane to 
within small values of O(a)  for t of O(1). Generally, this does not hold for t of 0 (a-') 
since aSE,/ar is of O(t )  and therefore the terms in (22) that are proportional to a may 
be comparable with the other terms in (22). Knowing the field $, we can easily obtain 
from (21 a, b )  the vortex velocity : 

A 1; rz( 1 - cosE bt)Kl(r) dr, U = 

A 
R! 

m 

V =  ?/3R:lo r2Kl ( r )  sin-btdr, 

A = A / ~ K ,  

where (28a, b)  are written in dimensional form and are valid for amplitude A of 
arbitrary sign. Expressions (27) and (28) completely determine the approximate 
solution of problem (21) for p = Ril(1 +O(a)). 

We now consider some properties of this solution. First, note that the regular 
stream function $* decays exponentially for r --f co and is continuous together with 
the first and second derivatives although the coefficient Kl( r ) / r  in (22) and (24b) has 
a singularity at r = 0. Thus, the relative vorticity of the regular field VZ$, remains 
regular, i.e. no additional singularities appear in the vorticity field. Of course, this 
fact is in full agreement with conservation of potential vorticity in fluid particles. 

Solution (27a) is a sum of two dipole components with mutually perpendicular 
axes. The components proportional to sin 0 and cos 8 produce motion of the point 
vortex along the latitude circle and the meridian, respectively. The resulting vortex 
velocity components are given by (28a, b).  It readily follows from (28a) that the 
zonal velocity U is always directed westward. The meridional velocity V conserves its 
sign (see Appendix A) and is directed northward for a cyclone ( A  > 0) and southward 
for an anticyclone (A < 0). This behaviour of the vortex agrees with the results of 
numerous computer and laboratory experiments for monopole eddies on the /3-plane 
(e.g. Adem 1956; Firing & Beardsley 1976; McWilliams & Flier1 1979). Formulae 
(28a, b)  make it possible to obtain the vortex trajectory for t < 01-l (in dimensional 
form for t 4 Tz), when the vortex has moved through a distance less than its own 
lengthscale. For t 4 1 we obtain from (27a, b )  (see Appendix A) the expressions 

14-2 
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y = In’ 1x1 I’ 

FIQURE 1. Trajectory of an intensive singular vortex with p = R;’ (1  + O(a)) 
on a fi-plane (schematically). 

whence it follows that at  the beginning the vortex moves nearly along the meridian 
and the vortex velocity increases together with increasing amplitude IAl. For large 
1 4 t 4 o1-l (in dimensional form for Tl 4 t 4 T,) the velocities can be written in the 
form 

It is seen that with increasing t the zonal velocity U no longer depends on the 
amplitude A and tends to -pR; (the limiting phase velocity of Rossby waves) and 
the meridional velocity V tends to zero. The rate of approach to the limits increases 
with increasing intensity (Al. Accordingly, for t 9 1 the displacements of the vortex 
along the x- and y-axes are 

It follows from (31) that for large t the vortex trajectory is expressed by the 
approximate formula 

y = -  pR! in4 (H) 1x1. 
8A @: 

The trajectory (corresponding to a cyclone) is represented schematically in figure 1. 

7. The evolution of material lines 
Equation (22) can be written as 
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- 1 ’  

FIQURE 2. Function B (T ,  R) for different R and q = 2. (a) R = 0 ; ( b )  R = - 1 ; 
(c) R = -R,  = -1.83109; (d )  R = -2.5. 

where the potential vorticity 52 and the vortex displacement along the meridian yo@) 
are 

1 -a2 

a 
52 = 52,--Ko(r)+y+ay,(t), 

We now consider the evolution of the potential vorticity isolines 

1 -a2 
a O(r, t )  = 52,--K,(r)+y+ay,(t) = const, 

(34) 

coinciding here with material lines. For t = 0 relation (36) takes the form 

Q(r,O) = -qK,(r)+y = R = const, (37) 

where the constant R varies from - 00 to 00, and q = 1 -a2)/a. Assume that q > 0 
and write (37) in polar coordinates: 

For a given R the solution to (38) has two branches: 

8- = arcsinB(r,R), 8+ = n-arcsinB(r,R), (39) 
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R = -2.5 

- 3  
- 3  - 1  1 3 

FIGURE 3. Typical vorticity isolines (36) at the initial time t = 0 when 0, and yo(t)  
are equal to zero; q = 2, R, = 1.831 09. 

where -in < arcsinB(r,R) < in. Solution (39) exists only if IB(r,R)I < 1, i.e. for 
T > rl where rl = rl (R) satisfies the equation B(rl, R) = 1 ,  

qKo(r1) +R = T1 (40a) 

(see figure 2). This means that the isoline R is always outside the circle r = rl(R). The 
branches 6-, O+ join the point M1(rl, el), 6, = which is the point of tangency of the 
isoline with the circle T = r1(R). 

The specific value of R is equal to -Ro, where R, together with the corresponding 
r!ll (see figure 2c)  satisfies the equations B(rOl, -Ro) = - 1, B;(r!,, -Ro) = 0, i.e. 

1 

q 
Kl(TOl) = -, 

qKo(rOl) +TO, = R,. (40c) 

For R = -R, the branches 6- and 8+ also join at the point M!!l(r!!l, el), = -in 
and form the separating line L, (see figure 3) consisting of a closed loop and an 
unclosed part which approaches the straight line y = -R, for r+  00. The gradient 
VQ vanishes at the saddle point 

The isoline with R > -R, are unclosed and lie above the separating isoline L, in 
figure 3. There are two isolines for each R < -Ro. The first is closed and lies inside 
the loop, and the other lies below the separating line in figure 3, and is unclosed. Any 
unclosed isoline R approaches the line y = R for r+ CO. 

Thus, for q $. 0 there exists near the singular vortex a capture region moving 
together with the vortex. It follows from (40b) that parameter r!,+O as q + O  (the 
singular vortex goes into a point vortex), i.e. the size of the capture region tends to 
zero. In the case of a point vortex (q = 0) the capture region vanishes and the 
vorticity isolines are straight lines at the initial time t = 0. 

We now consider the time evolution of the potential vorticity isolines for the 
singular vortex discussed in the previous section. Since 1-a2 = O(a), we have 
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t =  1 

FIGURE 4. Potential vorticity isoline R = 0 for q = 2 and different times deformed by singular 
cyclone; here 8, = b(r$+@ and rl satisfies (40a). 

q = (1 -a2) /a  = O(1). By virtue of (26) and (36), an approximate equation of an 
isoline for t > 0 can be written in the form (in the reference fiame attached to the 
vortex) 

sin (8- bt) = qKo(r)+R = B(r,R). (41) r 

Equation (41) is similar to (38) and the solution to (41) also has two branches for 
a given R :  

The common point of these branches H1(rl,8,), 8, = b(r,)t+$, rotates counter- 
clockwise around the circle T = r,(R) with constant angular velocity b(r,). As before, 
the isoline R is outside the circle T = rl(R). 

As is seen from (42), the form of the isoline is determined by time t and the 
parameter R, equal to the distance between the vortex and the unperturbed vorticity 
isoline for unclosed isolines. We now examine how the shape of the isoline depends 
on the parameter R for a given t .  

6+ = bt+arcsinB(r,R), 8- = bt+n-arcsinB(r,R). (42) 
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f =  1 

FIGURE 5. 

t = 2  

Separating isoline for q = 2 and different times; R = - 1 

Let R be non-negative. The derivative 

do- db 1 aB -- - t-- 
dr dr [1-B2(r,R)]i% 

,83109. 

(43) 

is positive for sufficiently small t since b, < 0, B, < 0, and for r +  00 the functions 
b(r) ,  B(r, R )  decay exponentially and proportionally to r- l ,  respectively. Thus, 
& ( r )  decreases with decreasing r .  For the second branch we have 

(44) 
do+ db 1 aB 
dr dr [l -Bz(r ,  R)] t  ar ' 

= t-+ 

whence 0: < 0 for any r belonging to the interval [r,(R), 001. Accordingly, 8' 
decreases monotonically with increasing r .  A potential vorticity isoline for R 2 0 and 
different t is represented in figure 4. With increasing t the first term on the right-hand 
side of (43) increases in absolute value and, for sufficiently large t ,  exceeds the second 
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R = -2.5 
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FIGURE 6. Typical vorticity isolines for q = 2 and t = 1. 

term for any r belonging to the interval [ p , , ~ , ] ,  where F , , P ,  are the roots of the 
equation 8; = 0. In this interval 6 < 0, and 8- increases with decreasing r. For 
increasing t the interval [ Q , , F ~ ]  and the angle 8, increase and tend to infinity as 
t -+ 00. This means that the vorticity lines with a fixed R > 0 must be wound round 
the vortex more and more strongly with increasing time t (e.g. see figure 4). If we 
choose the length of the radius vector of the point 8+= 72: (see figure 4) as a 
characteristic dimension of the spiral line, then by virtue of (41)’ this parameter is 
O(1nt) for large t .  

The vorticity isolines with -R, < R < 0 change in time as in the case R > 0. A 
more interesting process is the time evolution of the separating isoline corresponding 
to R = -Ro. The saddle point W-, has the coordinates r = r!!, (see (40b, c) and 
8 = el = b(r!.,)t-&, and rotates counterclockwise around the circle r = r!, with 
constant angular velocity b(r!!,). It readily follows from (40) that r!!, > rl( -Ro), and 
therefore b(r,)  > b(rOl) and the saddle point W-, rotate more slowly than the point 
M,. An analysis of the derivatives 8: and 8; shows that in the interval [rI,rEl] the 
derivative 8: is negative, and for sufficiently large t there is a point r = r-(t)  for which 
8; = 0, and 8; 2 0 (@ < 0) for rl < r < r - ( t )  (r-( t )  < r < rO1). In the region r > r!!, we 
have 8; < 0, and there exists a point r = r+(t) for which B: = 0, and 8: < O(8: 2 0) 
for rol < r < r+(t) ( r  2 r+( t ) ) .  The separating isoline is represented in figure 5 for 
different times. As is seen, for sufficiently large time the capture region has a rather 
complicated form and consists of the circular region r < rl and a spiral ‘tail ’, the 
number of revolutions of the ‘tail’ round the vortex increasing with time. This 
evolution is due to the difference in the angular velocities of the points M I  and W-,. 
For R c -Ro the closed and unclosed isolines change in time like the capture region 
and the unclosed part of the separating line, respectively. The general pattern of 
typical vorticity isolines for moderate times is shown in figure 6.  

Typical vorticity isolines with different R for a point vortex (when 6’ = 1, i.e. 
q = 0) are represented in figure 7. The main distinction from the previous case is that 
all the isolines are unclosed (the capture region is absent) and the number of 
revolutions of the isoline R around the vortex increases with decreasing IR(. The 
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FIGURE 7. Potential vorticity isoline Q + y  = R deformed by point cyclone (schematically); here 
p = 0, 8, = b ( r 1 ) t + @ ,  r ,  = IRI. (a) The vortex is at a large distance IRI to the south of the isoline; 
(b) the vortex is at a moderate distance IRI to the south of the isoline ; (c) the vortex is at a very 
small distance from the isoline; (d) the vortex is at moderate distance (RI to the north of the 
isoline; (e) the vortex is at a large distance IRI to the north of the isoline. The arrow indicates the 
direction of motion of the vortex along the meridian. 

vorticity line which is a t  zero distance R = 0 from the vortex makes an infinite 
number of revolutions around the vortex. The time evolution of a fixed-vorticity line 
R does not differ qualitatively from the evolution in figure 4. 

The neglect of terms of the order of a in (36) means that we disregard the effect 
produced on the material lines by the small meridional displacement ay,(t) of the 
vortex and the correction @') of the order of a to  the regular vorticity. Note that the 
terms ayo( t )  and Dil) must be taken into account in (34) simultaneously although 
decays exponentially for r +  co. For example, if we include ay,,(t) but neglect @) in 
(34), then the continuity condition is violated because the parameter R in (41) is 
replaced by the difference R - q , ( t ) ,  and for q + 0 separating isoline R = -R, 
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becomes unclosed for t > 0. Similarly, in this case a point vortex (a = 0 )  becomes able 
to intersect the material lines. 

8. A moderate-intensity vortex 
We now consider problem (21a, b , d ) ,  (22) for a singular vortex of moderate 

intensity when the parameter a in (22) is of 0(1) and p is arbitrary. This is a very 
difficult problem and we only managed to study the initial stage of the motion using 
the matched asymptotic expansions method. To find the form of the asymptotic 
representation we consider solution (27) for t + O .  In the nearest neighbourhood of 
the vortex of width of O(t$ (region I) solution (27) has the following approximate 
form : $r x t: In tq51(r/ti, 8) ,  where q51(7, 8) is a smooth function. In region I1 lying 
outside region I, solution (27) is smooth and can be written in another approximate 
form : 

$, = t$JW, 0) .  

The solution for the case of a singular vortex of moderate intensity has a similar 
structure for t --f 0. In  region I where the solution changes rapidly in space and time 
and depends on the variables 7 = r/&,  8, t, the asymptotic expansion of the solution 
has the form 

where [a]+ is the integral part of the number a for a > 0, and [a]' = 0 for a < 0. The 
smooth solution in region I1 is written as 

m-2 k-0 

Expansions (45), (46) are self-consistent in the sense that their substitution into (22) 
yields no terms distinct from those in (45), (46) (see Apprendix B). The peculiarities 
of the matching procedure for (45), (46) are described in Appendix C; here we discuss 
the lowest-order solution. 

Assuming that a = 1, substituting (45) and (46) into (22), and collecting the terms 
with the same m, k we find, after some transformations, that 

V2 $20 - 62$20 = -K l ( r )  cos 8. (474 

where sSl are arbitrary functions and 

1 "  

To find the functions s30, sS1, $30, $31, $20 it is necessary to supplement ( 4 7 ~ 7 )  with 
matching conditions ; the detailed discussion of these conditions is given in Appendix 
C and here we only give the results. 
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First, we match the expansions for the relative vorticity SZ, in regions I and I1 and 
find that 

The solution to (47a-c) satisfying the matching conditions for expansions (45), (46) 
is written as 

(49a) 

(49b) 

(49 4 

$ --I 
31 - 4 7 cos $ 9  

$30 = 7(in sin8+&) cos~)+vbi)(q) sin8+vbt)(q) case, 

$20 = 1-a2 [aKl(w - 4 ( d I  cos 87 
1 

where a2 lna 
&,) = -;(3C+ln$)+;+ 

2(1 -a2)' 

1 

7 
, R2(q)  = - 7  sin,; 

C is Euler's constant. Using (45), (46), (49a, b ) ,  (50), (51) one can find the zonal and 
meridional velocities of the singular vortex : 

Equations (49), (52) determine completely the regular field $r up to within O(t2 lnt) 
for small t .  In principle, the above procedure can be continued to find the asymptotic 
solution to within an arbitrarily small error. 

As in the case of an intensive vortex, solution (49), (52) decays exponentially for 
r +  00 and is a sum of two dipole components with mutually perpendicular axes. The 
intensity of the component proportional cos8 exceeds that of the sin8 component 
and, therefore, the meridional vortex velocity is much smaller than the zonal 
velocity. This means that the vortex always moves nearly along the meridian at the 
initial stage of motion (compare with (29)). It is interesting that the structure of the 
dipoles near the vortex (in region I) and consequently the vortex velocity (52) do not 
depend on the vortex scale p-l  in the lowest order. The vortex velocity also coincides 
with the initial velocity of a logarithmic point vortex on a rotating sphere calculated 
by Bogomolov (1985). Thus, the initial dynamics of a singular vortex is local in the 
sense that the structure of the lowest-order regular field in the nearest neighbourhood 
of the vortex is determined only by the logarithmic singularity in @s and does not 
depend on the field outside that neighbourhood. 

The resulting solution (49), (52) is valid for a + 0, 1 ,  and in the case cz = 1 when a 
singular vortex goes into a point vortex the solution slightly changes, namely the 
function @20 in (49c) and the coefficient 8$,) in (49b) are replaced by 

$20 = kl(d Jrrn+)dz+K1(r) ~ ~ l ( z ) I l ( % ) d z  cos8, 1 (53) 

(54) &,) = -+(3C+ln+). 
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The solution changes more substantially in the case a = 0, which corresponds to 
the rigid-lid approximation. Here the formal difficulty lies in the fact that expansion 
(46) is inapplicable for large r since the coefficients @mk(r,O) in (46) decay not 
exponentially (as in the case a =I= 0) but algebrically and the energy of the regular 
component is infinite for arbitrarily small t (for more details see Appendix D). 
Physically, the inapplicability of (46) relates to the fact that in the rigid-lid 
approximation the maximum group velocity of Rossby waves becomes infinite and 
their influence is significant in the far-field region r B 1 even for small t .  Only very 
long Rossby waves can reach the region r 9 1 for t + 0, and therefore the solution 
must change slowly in space for r %- 1 and t + O .  Since the radiation term a@.,/ax is 
of the order of aV2yi,/at for r %- 1, the solution in the far-field region depends on the 
stretched coordinates 

(55) (X, Y )  = t(x,  y). 

So, besides the regions I and I1 (where, as before, expansions (45), (46) are valid), in 
the case a = 0 there appears a new region I11 where r = O(t- l )  and the solution is 
written in form of the expansion 

The solution in region I remains unchanged, but in region I1 it changes so that 

Substituting (56) into (22) and matching (46) and (56) we obtain 

where R = (Xz + P)i (for more detail see Appendix D). 
For r +  00 we have aG/ax = O ( d )  (Kamenkovich 1989), and therefore the energy 

of the regular component is finite. Note that the resulting solution has a rather 
complicated structure and cannot be represented as a sum of two dipoles in the far- 
field region 111. 

9. Summary and discussion 
The preceding analysis shows that the singular vortices on a ,&plane substantially 

differ from the well-known point vortices in two-dimensional hydrodynamics. The 
redistribution of the background potential vorticity produced by the vortices, 
generates a regular (i.e. without singularities) field in addition to the velocity field 
induced by the vortices themselves. The system of equations describing the joint 
evolution of vortices and the regular field is obtained in $2. An analysis of the system 
shows that if the vortex amplitudes and coordinates are not set in an appropriate 
manner, then the regular field is non-zero, and therefore the theory developed by 
Zabusky & McWilliams (1982) and Kono et al. (1989) is heuristic. 

In the case when all the singular vortices possess the same spatial structure (i.e. 
p ,  = p ,  = , . . = p N )  the system of equations is substantially simplified and possesses 
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an integral of motion ($3) .  An analysis of the integral shows that in the case of an 
individual singular vortex the regular component moves the vortex along the 
meridional direction (cyclone travel northward, and anticyclone travel southward). 
The absolute minimum of energy of a regular component (equal to zero) is realized 
in stationary systems moving along the latitude circle a t  a constant speed lying 
outside the range of phase velocities of linear Rossby waves ($ 4 ) .  Each of the systems 
is a discrete two-dimensional Rossby soliton and, vice versa, any distributed Rossby 
soliton is a superposition of the singular vortices concentrated in the interior region 
of the soliton. 

An individual singular vortex was studied in $6 5-8. The suggested theory is valid 
for times 

t 4 (PIP)-' (59) 
when Rossby wave radiation can be neglected. For these times the motion of the 
singular vortex and the regular field are approximately described by (24a) .  This 
regime attains a developed stage for a high-intensity vortex when the advective 
timescale Tl = 2n/p2A is much smaller than the wave timescale T, = (/3/p)-l, i.e. 
a = TJT, 4 1. We have examined this case for p = Ri1( 1 + O(a) )  when a singular 
vortex is closed to a point vortex (3  6). At the initial stage, for t 4 T,, a region of rapid 
space-time variations of width of the order of tg appears in the neighbourhood of the 
vortex, and outside the region the field is smooth. In  the course of time the region 
of rapid variations extends monotonically, and its size increases proportionally to 
lnt for TI 4 t 4 T,. The regular component is a sum of two dipoles with mutually 
perpendicular axes. The advective interaction of the distributed vortices in the 
dipoles generates motion of the point vortex along both the latitude and longitude. 
With increasing time the intensity of the dipole with axis parallel to latitude tends 
to a constant value and the intensity of the dipole with meridional axis tends to zero. 
Accordingly, the point-vortex velocity varies from a nearly meridional small velocity 
a t  the initial stage of motion to an almost zonal velocity close to the Rossby wave 
drift velocity -PR; for t % TI. I n  the mid latitudes R, is approximately equal to 
50 km for the ocean and to 2000 km for the atmosphere, and therefore a t  the latitude 
45" the drift velocity is equal to approximately 4 cm/s for the ocean and 65 m/s for 
the atmosphere. Thus, the vortex velocity induced by the p-effect can be of the order 
of (in the ocean) or exceed (in the atmosphere) the leading flow velocity. This means 
that the /3-effect must be taken into account in investigations of motion of intensive 
eddies in the ocean and atmosphere (e.g. of rings and typhoons). 

It is important to  note that the nearer the velocity of a localized eddy is to  the 
Rossby wave drift velocity -/3R;, the weaker the destruction of the eddy by Rossby 
wave radiation. This is because an eddy moving with velocity close to  -PRi radiates 
long almost non-dispersive Rossby waves with phase and group velocities that  are 
also close to the drift velocity. From the above theory it follows that the more 
intensive the vortex is, the nearer its final velocity approaches the drift velocity. 
Thus, the Rossby wave radiation destroys more effectively localized eddies with 
small amplitudes than those with large amplitudes. This conclusion is confirmed by 
the results of numerical experiments described by Smith & Reid (1982), Horton 
(1989), and Kolchik, Reznik & Stepanyants (unpublished). 

An analysis of material lines (potential vorticity isolines) given in $ 7  shows that 
a singular vortex with p =I= Ril captures ambient water and involves in rotational 
motion a water volume increasing with time. Under the action of the vortex, a 
material line undergoes spiral-like deformation which increases with increasing time 
and/or decreasing distance between the vortex and the material line. Note that a t  
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the lowest order the vortex trajectory and velocity do not depend on the parameter 
q = (1 -p-2R;2)/a,  which is a measure of the deviation of the vortex from a point 
vortex ($6). At the same time the form and the evolution of material lines depend 
strongly on this parameter; for example, the capture region vanishes for q = 0 (for 
a point vortex) and increases with increasing q. 

The initial evolution of vortices with arbitrary scales p-l and small or moderate 
amplitudes (when a = TJT, 2 1) were considered in $8. In this case the regime 
described by (24a) is realized only for R;’ + 0 and t < T,, then the Rossby radiation 
and self-interaction of a regular field must be taken into account for t 2 Tl. The 
comparison of solutions for different 6 shows that, to within small magnitudes, at the 
initial stage the regular field in the nearest neighbourhood of the singular vortex 
(region I) and the vortex velocity do not depend on 6. Taking account of the terms 
of the order oft in the V-component, it  follows from (52) that a decrease of the vortex 
size p-l leads to an increase in the vortex meridional velocity. The flow field outside 
region I depends strongly on a, and the decay rate of the field for 7+ m decreases 
with decreasing 6. This is accounted for by the increase of maximum group velocity 
of Rossby waves with decreasing &. 

In the rigid-lid approximation (Ril  = 0) the maximum group velocity of Rossby 
waves is infinite and the Rossby wave radiation cannot be neglected even for t + O .  
Accordingly, (24) is inapplicable throughout the plane and the radiation term 
a a$Jax in (22) is important in the far-field region where r = O(t- l ) .  The radiation field 
changes slowly in space since only very long Rossby waves can reach the region 
r % p-l for t -+ 0. The field has a rather complicated structure, and, in contrast to the 
stream-function field in the region r ,< p-l ,  it  cannot be represented as a sum of two 
dipoles. 

Note that the nonlinear problem (22), ( 2 1 4  is rather complicated even for t + O .  
For some details relating to the solution of this problem see Appendixes B-D. The 
suggested method can be used for investigating the initial stage of motion of a 
singular vortex in arbitrary regular flows. 

Many questions connected with the above theory arise. Are the discrete Rossby 
solitons stable ? Can the singular vortices combine spontaneously to form discrete 
Rossby solitons ? What is the nature of interaction between vortices with different 
scales p ,  ? What is the effect of the Rossby wave radiation on the vortex dynamics T 
What are the stochastic regimes in systems of such vortices ? etc. These remain to be 
solved. 

The author expresses his gratitude to Professors G.  K. Korotaev, V. M. 
Kamenkovich, V. M. Volosov and Drs S. Meacham, S. V. Musylev, D. Y .  Lysanov 
for valuable discussions. 

Appendix A 
We rewrite (28b)  in non-dimensional form 

V = J: r2K,(r) sin bt dr, b = ( 1 / r )  Kl (r ) ,  (A 1) 

and replace the variable r by the variable b(r)  ; it follows from (A 1)  that 

V = [omJ’(b) sin bt db, 
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where 

The derivative dF/db is given by 

(A 4) 
_ -  dF -- d#dr - d r 8 r 3 ( b ) + 2 r 4 ( b ) T ( b ) + r 4 ( b ) [ r ( b ) - r ( b )  T#)] - 
db dr db- db [2 + r ( b )  m)I2 

Using the formula Ko(r) = -Kl(r) it can readily be shown that 

By virtue of formula 9.6.24 in Abramowitz & Stegun (1964), we have K,(r) > Ko(r), 
and hence r-rr; > 0. Thus, dq5/dr > 0 and dF/db < 0 since dr/db < 0. Hence, the 
function P(b) decreases monotonically with increasing b. Let us represent integral 
(A 2) in the form 

(A 5 )  
W 

V =  n-0 2 Yn, Yn=[~+l)p(b)sinBtdb. 

Taking into account that the function F(b)  is positive and monotonic, one can easily 
show that (i) Yzm > 0, F.2m+1 < 0;  and (ii) lYzml > IYZm+,l, whence V > 0. 

To obtain the limiting cases (29), (30) we replace r with b(r) in integrals (28a, b)  and 
then use the ordinary methods of approximate evaluation of integrals with 
oscillating integrands (e.g. Olver 1974). 

Appendix B 
Consider the expansion 

m-3 k-0 

LEMMA I. The product S = t-tp InQtS, p > 0, 0 < q < [&I+ can be represented in the 
form of expansion (B 1 ) .  

One can write the following simple relations: 

W [(m-1)/21+ m [(n-p-l)/zl++q 
8, = t(m+p)/:! 2 lnk++QtSmk = 2 tin 

where skk = Knk(7, 0 ) .  Since [a-P]+ = [a]+-[P]+ for 01 > /3 2 0, 

m-3 k-0 n-p+3 k-q 

["-;-" + q =  [n;l]+-k]++q - < [?I+. 
Lemma I is proved. 

lnktSkk, (B 2) 

(B 3) 

LEMMA 11. The product of two expansions of the form of (B 1 )  can be represented as 
(B 1 ) .  Consider the product 
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One can readily show that 

m m  km 1n 
TS = x x t(m+n)/-2 11 C 1nk+l t T mk S nl 

m-3 n-3 k=O 1-0 

m.n-3 r-0 

where km = [(m- 1)/2]+, 1, = [(n- 1)/2]+. We have 

k m + l n = [ F - ] i + [ T y < [  m- 1 n- 1 m+n-2 1 ,  + 

since [a+P]+ 2 [a]++ Ip]+ for a, /3 > 0. Finally, we obtain 

W [(m+n-z)/z]+ m [(9-2)/21+ 

T s  = x t(m+n)/Z C. In't T A ~ ~  = x tiq x Inrt qr. 

Whence Lemma I1 follows. 
Rewrite (22) in terms of 7 = r/ti, 8, t, substitute expansion (45) into the resulting 

equation, and consider expansions of individual terms. Using Lemmas I, I1 one can 
readily show that all the terms can be written in the form of (B 1). Thus, the 
substitution of expansion (45) into (22) generates no terms different from those in 
(45), i.e. expansion (45) is self-consistent. 

To carry out an analogous investigation of expansion (46) we substitute i t  into 
(22). The derivative aSE,/at can be represented in the following form: 

Let us consider the product l7 of two expansions of the form of (46): 

m t(m-2)/~1+ 
T =  ttm lnktTmk, 

m-2 k-0 

n-2 1-0 

The product 17 is equal to 

m, n-2 r-o 

where Em = [(m-2)/2]+, in = [ ( n - 2 ) / 2 ] +  whence we conclude that 

OD [(m+n-4)/~1+ 00 [(9-4)/21+ 

n= t(m+n)/z x lnrtTAnr = th ~ n r t ~ ; , .  (B 6) 
m,n-z r-0 9-4 r-0 

It follows from (45) that 

m--2 k-0 

whence 

q-4 r-0 
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Using (B 6), (B 8) we see that the sum 

J ( I , ~ , , V ~ @ ~ ) +  J(Ur sint9-Vr c o s 0 , Q r ) + ~ + K ,  a@ cost9 
ax 

is represented in the form (B a), i.e. expansion (46) is self-consistent. 

Appendix C 
The matching procedure is not simple here since different terms in expansions (45) 

and (46) can be of the same order in the intermediate region where 

r = C t Y ,  0 < y < ;, 5 = O(1).  

However, i t  turns out that  this can take place only for the terms of the same degree 
m. I n  the intermediate region the general term of (46) takes the form 

tim Inktfmk ( c t y ,  e), o c y c t.  
Two terms with different m,, k,, and m,, k,  are of the same order if 

for t + O .  Here fi = fmfkI (&', O ) ,  i = 1, 2 and c ( 6 ,  y ,  0) is of the order of 1. Introducing 
the variable u = tY we can rewrite (C 1)  in the form 

q(&, 0 )  = u ( m 2 - m 1 ) / 2 y  lnk2-kl u [ c ( ~ ,  y ,  6 )  +o( l)]yk1-k2, (C 2) 
where q~(cu, 8)  =f,(Cu, B)/f,(<u, 0). It readily follows from (C 2) that 

for u+O. Obviously, (C 3) is possible only for m, = m,. The investigation of (45) is 
similar to the above. Thus, the whole sums 

[(m-l)/zlf [(m-z)/zI+ 
tfm c lnkt$,,(V,t9), tim ln"t@,,(r,e) 

must be matched and not just separate terms of expansions (45) and (46). The lowest- 
order sums are written as 

k=O k=O 

We first determine the vorticity D,. The corresponding expansions in regions I and 

D, = tQ,,(r, 0) +t32,,(r, 8)  + .. . , (C 5b) 
where i 3 1  = 9' $31, 8,, = 9' $,,, SZ,, = V2 @20 - iP@,o, and D3, = V2 @30 - iP@,,. 
Rewriting (C 5a,  b) in terms of the intermediate variable 5 = r t - y , O  < y < ; and using 
(47) we obtain for fixed 6 and t + O  the relations 

ti In t8,, + t i i 3 0  = t y  In t 2y5s,,(e) + t~{"s,,(t9) - sin 01 + 25 In gs3,(e)} + o ( t 1 - 7  In t )  ; 

tD,, = - t l - y ( l / t J  cosB+O(t'+Ylnt). 
(C 6a)  

(C 6b) 
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It follows from (C 6 )  that matching is possible only with (48). The solutions to (47a-c)  
can be written as 

m 

@20 = C Kn(ar) (A!$ sin nB+Bg cos ne) + $20(r)  cos 8, (C 7 a )  
n=o 

and A g ) ,  I?!$, &), &), Ag), 82) are constants which must be found by matching 
the lowest-order sums. The matching procedure is analogous to that for the vorticity 
expansions (C 5 a ,  b )  and gives 

~ 8 )  = = $n) 30 = B ( n )  30 = $n) 31 = B ( n )  31 = 0 for +- 1. , A# = 0, A&) = 0, 
a 

B::) =-, A$,) =in., Bg) = - $  for n =  I ,  

&,) is given by (50) .  

Appendix D 
We now consider some details of (21), (22) for @ = 0 and t + 0. To show that (46) 

is inapplicable for large r we write the equation for @40: 

where UZl, Uzo, VZl, V,, are the coefficients in expansions (B 7). It follows from (57) ,  
(D 1) that 

@ 40 = -Q C O S ~ ~ + ~ T ,  el, (D 2)  
where S(r,  8) = o(r-l) for large r .  By virtue of (D 2) the energy of the regular 
component is infinite for arbitrarily small t .  

Substituting (56)  into (22)  we obtain the following equation for gz0: 

where o2 = a2/aX2+a2/ay2. The boundary conditions for (D 3) follow from the 
requirements that $,, must decay as r+  00 and t2$,, should be matched with t2@,,. 
Let us consider the following auxiliary problem : 

avzs as aKo 
at ax ax -+-=- 

s=  0 for t = o ,  (D 4b)  
S is regular as r + O  and decays as r + CQ. (D 4 4  
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Using the smallness of the function $, and its derivatives for t + 0 in regions I1 and 
I11 (see (46), (56)) it can readily be shown that $rr approximately satisfies (D 4a)  for 
t 4 1 in regions 11, 111. We introduce function 17 by the formula 

an 
ax S=- .  

By virtue of (D 4a), IZ satisfies the following equation : 

av2n an 
at ax 

+- = Ko(r ) .  

The solution to (D 6) can be written as (Kamenkovich 1989) 

= c" c" K,I[ (x-~)2+(y-r)21~}G(~,r , t )d~dr ,  
J - m  J - m  

+ cos2 (@))I9 
[(u2 + 1) (u2 + C O S ~  ( t e ) ) ] ~  du. 

Here G is the Green's function that is the solution to the problem: 

G = O  for t = 0 ,  G < m  for r + a ,  (D 9b)  

where H(t) is the Heaviside function. We now find the function IZ in the case when 
x, y are of O(1) and t + O ,  and in the case when X, Y are of O(1) and t + O .  Here it 
is advisable to use the fact that 

17 = -27cq5, (D 10) 

where q5 is the solution to the equation 

v2q5-q5 = G ( x , y , t )  

vanishing at t = 0. We have G x (t/2x) lnrt for t + O  and T = O(1) (Kamenkovich 
1989), that is for these r and t (D 11) becomes 

1 1 
27c 2R 

V2q5-q5 x -t lnt+-t lnr. 

By virtue of (D 12), 

and therefore (D 5 ) ,  (D 10) yield 

Hence, the function S approximately coincides with t$20 for r = 0(1), t + O  (see (57)). 
To find q5 for t + O  and fixed X, Y we write (D 11) in terms of X, Y :  

t2V2q5-q5 = tG(R,O), (D 14) 

(D 15) 

where R = tr, tO(R, 0)  = G ( x ,  y, t). We seek q5 in the form of the expansion 

q5 = t$,(X, Y)+t2$2(X, Y)+ ... . 
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Substituting (D 15) into (D 14) we obtain 

#1 = -tG(R, 0 ) ,  #z = 0, #3 = V2#1. (D 16) 

Accordingly, the solution S has the following form in this region: 

a# aB 
ax ax s = t2S(X, Y )  = -2K- = 2ntZ-+O(tS). 

It can easily be shown that in regions 11, 111 the expanisons for S can be matched. 
In the intermediate region we have 

( = r t " = O ( l ) ,  o < a <  1, (D 18) 

and 

Further we have O(R, 0 )  x (1/27c) lnR, R+O, i.e. aG/aX z (1/2RR) cosO as R+O 
(Kamenkovich 1989). In  the intermediate region we have R = rt = (Pa, and 
therefore 

aB 1 

ax 5 t2S(x, Y )  = 2nt2 - x tl+a- cos 8. 

Thus, the function t Z S  = 27ct2C@/3X = 2naG/ax is matched with t$zo. Finally, by 
virtue of (D 9), t2S satisfies the equation 

0, +-= avytzg) a(tzg) 
at ax 

whence it readily follows that S satisfies (D 3). Thus the function 

a 0  fizo (X, Y )  = 27c- ax 
is the desired solution to (D 3). 
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